Data Mining to Improve Traffic Safety

By
Randy K. Smith and Huanjing Wang
Department of Computer Science,
The University of Alabama,

Box 870290,
Tuscaloosa, AL 35487-0290

Prepared by

UTCA

University Transportation Center for Alabama

The University of Alabama, The University of Alabama in Birmingham,
and The University of Alabama at Huntsville

UTCA Report 04107
May 26, 2005



Technical Report Documentation Page

1. Report No 2. Government Accession No. 3. Recipient Catalog No.
4. Title and Subtitle 5. Report Date
Data Mining to Improve Traffic Safety May 26, 2005
6. Performing Organization Code
7. Authors ) 3 8. Performing Organization Report No.
Dr. Randy K. Smith and Ms. Huanjing Wang UTCA 04107
9. Performing Organization Name and Address 10. Work Unit No.

University Transportation Center for Alabama
P O Box 870205

University of Alabama 11. Contract or Grant No.
Tuscaloosa, AL 35487-0205

DTSR0023424
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
University Transportation Center for Alabama Final Report: 01/01/2004 — 12/31/2004
P O Box 870205
University of Alabama 14. Sponsoring Agency Code

Tuscaloosa, AL 35487-0205

15. Supplementary Notes

16. Abstract

The ever increasing size of datasets used for data mining and machine learning applications has placed a renewed
emphasis on algorithm performance and processing strategies. This research addresses algorithms for ranking
variables in a dataset, as well as for ranking values of a specific variable. We propose two new techniques, called
Max Gain (MG) and Sum Max Gain Ratio (SMGR), which are well-correlated with existing techniques, yet are
much more intuitive. MG and SMGR were developed for the public safety domain using categorical traffic
accident data. Unlike the typical abstract statistical techniques for ranking variables and values, the proposed
techniques can be motivated as useful intuitive metrics for non-statistician practitioners in a particular domain.
Additionally, the developed techniques are generally more efficient than the more traditional statistical
approaches.

17. Key Words 18. Distribution Statement
Data mining, traffic safety

19. Security Class (of report) | 20. Security Class. (Of page) 21. No of Pages 22. Price




Contents

(070 011=] | SRR TP ii
TADIES ...ttt b b %
FIGUIES ottt ettt et et e et e et e e b e e s teene e e te e te e st e eae e teenteare e reenaenneears Y
EXECULIVE SUMMAIY ..ottt sttt sttt sne e nbe e nnes vi
1.0 INEFOTUCTION ...ttt bbbttt sb e bbbt eneas 1
Value and Variable RANKING.........cccooveiieeii i 2

2.0 The Problem DOMAIN ........coviiiiieie et 4
Traffic ACCIAENT ANAIYSIS......cviiieiece e 4

3.0 Value RANKING.....c.iiiiiieie ettt 6
Value Ranking Fundamentals.............ccoooiiiiiiniieee s 6
Existing Value Ranking Methods...........cccveiiiiiiieiccc e 7
Statistical Significance Z Value (SSZ) .......ccccovveeveieiiiiiieiececee e 7

Confidence (CF) and SUPPOIt (SP) .....ooveiieiiiiiniecsie e 7

IMProvement (IM) ......oooiiiiieee e 8

4.0 New Value Ranking Methods ...........cccooiiiiiiiiiiiice e 9
New Value Ranking TEChNIQUES ........coiieiiiiiiieiec e 9
Over-Representation (OR) .......ccociiiiiiiiniie st 9

MaX GaIN (MG) ..ot et sre e 9

Max-MaX Gain (MIMG) ......cccooiuiiiiiiece e 11

Results Using New Value Ranking Method...........cccccooiiieiiiinien e 12
Pearson’s Correlation With Existing Methods ...........c.ccoovviieiincnnnnnn. 12

Running Time Efficiency Compared With Existing Techniques............ 12

5.0 Variable RANKING ......coiiiiiiiiiiieiiie et nne s 14
The Variable Ranking Problem ... 14
Existing Variable Ranking Methods...........cccccovveiiiiiiieiiee e 14
Chi-squared (CHI) ....ooveiieececece e 14

Correlation COeffiCient (CC) ...ooveiviiiiiiiiieee e 15

INformation Gain (IG)......cocviiiiiieieiei e 15

GaiN RAtio (GR) ....veiiieie et 16



6.0

7.0

8.0

9.0

10.0

A New Variable Ranking Method ..o 17
Sum Max Gain Ratio (SMGR) .......ooiiiiiiiiieiee e 17
ReSUItS USING SIMGR .......cviiieecccece e 18

Pearson’s Correlation With Existing Methods ...........ccccovvevviviiicinennn, 19
RuUnNNing Time COMPAIISON........coouiiieriieiesie ettt 20
(01 B 1 oF: LA o] o ST 20

Using column-major storage to improve variable selection performance............ 22
V0] A7 1A o] P PP OPTR 22
Results Under Value RanNKINgG.........cccooiiiiiiiiiiiiei e 22
Results Under Variable RANKING .......cccooveiiiiiiieseecce e 23
Integration WIth CARE ... 28
8.1 Improved QUErY INTEITACE.........ccciiiiieieee e 28

CONCIUSIONS ...t bbbttt st bbb b ereas 32
T (=] 157 00O 33



Number
3-1
4-1
4-2
4-3
4-4

6-1
6-2
6-3
6-4

6-5
7-1
7-2
8-1
8-2
8-3
8-4

Number
1-1
7-1
7-2

7-3
8-1

8-2
8-3

List of Tables

Page
A contingency table of variable V and target variable..............ccccooevieninnnn, 3
An example of MaxX GaiN.........ccooiiiiiiiiiee e 10
An example of Max-Max GaiN ...........coouriiiiiiiiee e 11
Number of variables correlated t0 MG .........ccocoviviiiiiiiie 13
Comparison of run times for different value ranking
techniques (in MITHSECONAS) .....ccueiiiiieiiie s 13
Frequency table of variable of “Day of Week” ...........ccooeieiininiiie, 18
Pearson’s correlation, SMGR and other methods............ccccovviininciiiininnn, 19
CompleXity ANAIYSIS......ccviiiiieiice e 19
Comparison of run times for different variable ranking
techniques (in MIIIISECONAS) .......coiiiiiiiiiie s 20
Results for the C4.5 algorithm ... 21
Variable selection, row-major OFder .........cccccvevveieiiesie e 26
Variable selection, column-major Order ...........ccocevenenienie s 27
Description of featured elements in Figure 8-1 ........cccccoovvvviiiiiienenc i 29
Summary of top five variables from Figure 8-1 .........ccccoeivevviieviieiicieceee 29
Summary of top five variables from Figure 8-2 ...........cccovvevviveviiieiicceee 30
Summary of top five variables from Figure 8-3 ..........cccco i 31

List of Figures

Page
The data MINING PrOCESS ......ooveiviiiiitieiicieeeie e 2
Average value ranking performance, column-major versus row-major .......... 23
Performance comparison, row-major versus column-major,
fixed number of rows, SMGR.........ccooiiiii s 24
Performance comparison, row-major versus column-major,
fixed cOlUMNS, SMGR. ...t s 25
Alcohol related filter, rank by SMGR .........cccooiiiiiiiiic e 28
Alcohol related filter, rank by CC ......ooiiiiiiieee e 30
Alcohol related filter, rank by CHI.......ccooiiiiieee e 31



Executive Summary

The ever increasing size of datasets used for data mining and machine learning applications has
placed a renewed emphasis on algorithm performance and processing strategies. This research
addresses algorithms for ranking variables in a dataset, as well as for ranking values of a specific
variable. We propose two new techniques, called Max Gain (MG) and Sum Max Gain Ratio
(SMGR), which are well-correlated with existing techniques, yet are much more intuitive. MG
and SMGR were developed for the public safety domain using categorical traffic accident data.
Unlike the typical abstract statistical techniques for ranking variables and values, the proposed
techniques can be motivated as useful intuitive metrics for non-statistician practitioners in a
particular domain. Additionally, the developed techniques are generally more efficient than the
more traditional statistical approaches

Vi



Section 1
Introduction

Motivation

Data mining is the exploration and analysis of a large dataset in order to discover knowledge and
rules. Data mining has been very successful as a technique for deriving new information in a
variety of domains (Berry & Linoff, 1997). Data mining is typically conceptualized as a three-
part process: preprocessing, learning (or training) and post-processing.

In the last decade, data that serves as a target for data mining has grown explosively. Data has
been growing increasingly larger in both the number of rows (i.e., records) and columns (i.e.,
variables). The quality of data affects the success of data mining on a given learning task. If
information is irrelevant or noisy, then knowledge discovery during training time can be
ineffective (Hall & Smith, 1999). Variable selection is a process of keeping only useful variables
and removing irrelevant and noisy information. It is always used as a data mining preprocessing
step, particularly for high-dimensional data.

Variable selection can be used to select subsets of variables in terms of predictive power. Since
variable selection effectively ranks set of variables according to importance, it may be referred to
as variable ranking. There is also an analogous notion of value ranking, which refers to the idea
of ranking the values of a particular variable in terms of their relative importance. In this
research, we examine existing techniques for both variable and value ranking, and we propose
new techniques in both categories. Our techniques were developed from traffic accident data
utilized by public safety officials searching for efficient mechanisms to identify, develop and
deploy appropriate countermeasures and enforcement regiments to lower traffic accident
occurrences. We show that our proposed techniques give similar results to existing techniques,
yet are conceptually simpler, and therefore of greater value to a practitioner using data mining in
a particular domain. In particular, the proposed techniques are metrics that are meaningful to a
practitioner beyond just their statistical implications. Because our proposed techniques are also
relatively efficient, they can be used efficiently as conceptually simple substitutes for the more
traditional and complex statistical approaches.

As a further investigation of the efficiency of our proposed techniques, we examine their
performance under competing storage models. We show that when data are stored in column-
major order, the performance of our proposed techniques is quite favorable. While column-
major order is generally inappropriate for transactional systems, it has been shown to be superior
to row-major order for non-transactional, statistical analysis systems that utilize categorical data
(Parrish et al., 2005). Our proposed techniques confirm these results and further support the idea
of using column-major storage for systems that support data mining.



Value and Variable ranking

Variable selection attempts to find a variable subset that describes the data for a learning task as
good as or better than the original dataset. We note first that, historically, there has been an
evolution in the terminology used to describe variable selection. Traditionally, attributes
correspond to the columns in a database table. The process of selecting certain attributes or a
smaller set of attributes to provide faster builds is called attribute selection. Over time, the
terminology has evolved to also call this process variable selection and feature selection. Dating
back to at least as early as the 1970’s, feature selection (Fukunaga, 1970; Andrews, 1971) has
been commonly used. More recently, some literature uses attribute selection (Baim, 1988;
Caruana & Freitag, 1994; Pappa, Freitas, & Kaestner, 2002; Hall & Holmes, 2003) or variable
selection (Viallefont, 2001; Foster & Stine, 2004). In 2001, the Neural and Information
Processing Systems workshop on Variable and Feature Selection used both of the terms variable
and feature selection. In this work, we use the variable selection in place of feature selection or
attribute selection. Figure 1 illustrates the role of variable selection in the data mining process.

Figure 1-1. The data mining process

In data mining, variable selection generally falls into two categories (Kohavi, John, & Pfleger,
1994; Mladenic & Grobelnik, 1999):

= The filter model and
= The wrapper model.

The filter model selects a variable subset independently without involving any learning
algorithm that will use the selected variables. The wrapper model selects a variable subset using
the evaluation function based on the predetermined learning algorithm. This type of wrapper
approach generally produces a better variable subset but tends to consume a lot of resources.
When the number of variables is very large, filtering is generally the preferred approach.

As noted above, one filter model technique is commonly referred to as variable ranking (Kohavi
& John, 1997; Guyon & Elisseeff, 2003). Variable ranking is a data mining preprocessing step
where variables are selected independently of the learning algorithm that will use the selected
variables. The procedure of variable ranking is to score each variable according to a particular
method; the best k variables will then be selected. For example, using a given method, rank the
10 best variables in predicting alcohol related traffic accidents. The advantage of variable
ranking is that it requires only the computation of scores of each variable individually and
sorting the scores (Guyon & Elisseeff, 2003; Stoppiglia et al., 2003).



Also as noted above, value ranking is closely akin to variable ranking. For categorical data, a
variable may take on one of a fixed set of possible values. For example, a variable labeled
gender may take on values of “Male,” “Female,” or “Unknown.” Value ranking is the process of
determining what values of a variable are most important or contribute most significantly to the
variable selection process. For example, if the variable “Gender” is ranked significant in
predicting alcohol related accidents, the value “Male” can be seen as the most important
contributor in “Gender” being ranked.

Our approach in this research is to examine existing value and variable ranking techniques. We
then propose new techniques that represent metrics that have intuitive utility to a practitioner,
comparing our proposed techniques to the existing ones in terms of (a) consistency with the
existing techniques and (b) performance. We show that the proposed techniques correlate well
with the existing techniques, with favorable performance as well.

Value and variable ranking are statistical approaches that examine one or a small number of
attributes that describe a record. Traditionally, these attributes are considered to be the columns
in a two dimensional table with each record being a row in the table. Previous results indicate
that statistical operations such as frequency and cross-tabulations are more efficient when the
underlying data is stored and processed in column-major order (i.e., with each column stored
contiguously on the disk) (Parrish et al., 2005). This is contrary to the vast majority of
contemporary database systems that process their data in row-major order (i.e., with each row
stored contiguously on the disk). In particular, rows are often inserted or deleted as a unit and
updates tend to be row-oriented. Statistical processing which may be concerned with only a few
attributes (columns) benefits from column-major order. Our results in evaluating Max Gain
(MG), a new value ranking technique that we propose, and Sum Max Gain Ratio (SMGR), a new
variable ranking technique that we propose, continue to support this research.



Section 2
The Problem Domain

Traffic Accident Analysis

The particular problem domain addressed in this study is the analysis of automobile traffic
accident data. Given the appropriate tools and data, variable ranking allows traffic safety
professionals to develop and adopt countermeasures to reduce the volume and severity of traffic
accidents (Parrish et al., 2003). The University of Alabama has developed a software system
called CARE (Critical Analysis Reporting Environment) for the analysis of traffic crash data.
CARE provides a tool that allows transportation safety engineers and policy makers to analyze
the data collected from traffic accident records.

CARE has been applied to traffic crash records from a number of states. The Alabama statewide
crash database in CARE has records (rows) that contain 228 categorical variables (column); each
variable contains attribute values varying from 2 to more than 600. CARE’s analysis domain is
restricted to categorical data, represented by nominal, ordinal and interval based variables.
Nominal variables have attribute values that have no natural order to them (e.g., pavement
conditions — wet, dry, icy, etc.). Ordinal variables do have a natural order (e.g., number of
injured, day of the week). Interval variables are created from intervals on a contiguous scale
(e.g., age of driver — 16-20, 20-25, 25-35, etc.).

The current system provides the users with filters to perform data analysis on particular subsets
of the data that are of interest. Filters are defined by Boolean expressions over the variables in
the database. A record satisfying a filter’s Boolean expression is a member of the filter subset,
while a record not satisfying the filter’s Boolean expression is excluded from the filter subset.
Common filters for crash data are filters for crashes within specific counties, filters defining
crashes related to alcohol, filters defining crashes involving pedestrians, etc.

In terms of our variable ranking techniques, the filter represents the target variable for learning
with two values: “0” and “1.” In particular, “0” corresponds to the records not satisfying the
filter’s Boolean expression, while “1” corresponds to the records satisfying the Boolean
expression. Filters provide an effective conceptual framework for our value and variable ranking
techniques in that they define two subsets: a control subset and an experimental subset. The idea
that a filter defines an experimental group that is compared with a control group is fundamental
to the value and variable ranking techniques discussed here. For example, in our traffic crash
domain, an “alcohol” filter defines the subset of crashes where alcohol is involved. Our value
and variable ranking techniques compare the alcohol crashes (experimental group) with all other
crashes (control group) to conclude which values and variables are most important.



Section 3
Value Ranking

Value Ranking Fundamentals

Value ranking is the process of assigning a weight or score to a value based on the value’s
occurrence in the subset of interest (experimental subset) when compared to the comparison
subset (control subset). Value ranking is described using the following notation. When
considering a training dataset that has n input variables and one target variable, the input
variables are noted as Vi (k = 1,...,n). For a particular variable V and each value i of variable
Vi, a score S(Vi;) of value i of the variable Vy is derived according to a particular value ranking
method computed from a corresponding contingency table described as follows. It is assumed
that a higher score of a value indicates a more valuable value than those with lower scores. For
ranking purposes, these values are sorted in descending order of S(V ).

Let the value of the target variable be “1” (i.e., experimental subset) or “0” (i.e., control subset),
and the values of input variable Vi be Viy, ..., Vkr-1. Then a contingency table (frequency table)
showing the responses of subjects to one variable as a function of another variable (Stockburger,
1996; Zembowicz & Zytkow, 1996) can be built up as described in Table 3-1.

Table 3-1. A contingency table of variable V, and target variable

) Target Variable
Input Variable Vi 0 b Row Totals

Vk.O fU,O(FU,O) f0.1(F0.1) fO“

Vi1 fr1,0(Fr-10) fr1,1(Fra1) fras
Column Totals fo fer m

Where fi; is the frequency for which the value of the variable Vy is i and the value of the target

r-1
_ o f*,jzzfi,j Fo_f ot Fijzm _ _
variable is J, i=0 T 0T L m  i=0,1,2,...,r-1,j=0and 1, and m

is the total number of records.
Existing Value Ranking Methods

The following sections describe existing value ranking techniques including Statistical
Significance Z Value (SSZ) (Howell, 2001; Richards, 2002; Parrish et al., 2003), Confidence
(CF) (Agrawal, Imielinski, & Swami, 1993), Support (SP) Agrawal, Imielinski, & Swami, 1993)
and Improvement (IM) (Berry & Linoff, 1997).



Statistical Significance Z Value (SSZ)

To determine statistical significance of a particular value, a standard statistical significance Z
test of proportions is performed. Any value with a difference in proportions which is significant
at the 2 percent alpha level (the critical value is 2.33 or -2.33) is considered to be statistically
significant, this also indicates that we can consider the likelihood that there is a difference in the
population to be 98 percent (Parrish et al., 2003). The mathematical definition of Statistical
Significance Z Value is described as follows (Howell, 2001; Richards, 2002). EqQ:

fi,l _fi,O o
[/Z:o fia /Z:o fi’J Egn. 3-1
(fo+f) y 1_(fi,o+fi,1) o N
/Z; fio +Z;l> fia) /Zj) fio +Zj} i) / Z;l) fio / Zj) fis
where

r is the number of values of variable V. The Statistical Significance Z Value considers the
value’s occurrence in both full dataset and in separate datasets (experimental subset and control
subset), it also considers the contribution of the sample size.

SSZVk,i) =

Confidence (CF) and Support (SP)

The problem of mining association rules has been introduced previously (Srikant & Agrawal,
1995). Given a dataset and a filter (), we need rank attribute value (X) of a particular variable.
The mining association rule can be X->Y. For example, Friday—> Alcohol where “Friday” is one
attribute value of variable “Day of Week” and “Alcohol” is the filter. The intuitive meaning of
such a rule is that records in the dataset which contain X tend to also contain Y (Agrawal,
Imielinski, & Swami, 1993). The Confidence of the rule is the number of records where X and Y
occurred together divided by the total number of records where X occurred. High confidence
implies a strong relationship between X and Y. The formula is described as:

CF(Vki) :L Eqn 3'2
’ fio+ fia
The Support of the rule is the number of records where X and Y happened together, divided by
the total number of records. The formula is described as:

fi1
SPVii)=—7 : 1
' - - Eqgn. 3-3
0 fio+ E o fi, q
where r is the number of values of variable V.




Improvement (IM)

Given an if-then rule (Kautardzic, 2001), such as:

if (a special value occurs, called condition)

then

(experimental subset occurs, called result),
a measure called Improvement indicates how much better a rule is at predicting the result than
just assuming the result in the entire dataset without considering anything. Improvement is

defined as the confidence of the rule divided by the support of the result. The mathematical
definition of Improvement is given by the following formula:

fia/(fio + fi1)
r— r-1 r-1
ijo fJ'vl /(Zj:o ijo +ijo ijl)

where r is the number of values of variable V. When Improvement is greater than 1, the value is
better at predicting the result than random chance, otherwise the prediction is worse.

Eqn. 3-4

IM (V)=



Section 4
New Value Ranking Methods

New Value Ranking Techniques

As detailed above, value ranking is the process of assigning a weight or score to a value based on
its occurrence in the experimental subset under investigation when compared to the control
subset. We propose three value ranking techniques: Over-Representation (OR), MG, and Max-
Max Gain (MMG).

Over-Representation (OR)

Over-Representation is a simple extension of a frequency distribution. The degree of Over-
Representation for a particular value is the value’s occurrence in the experimental subset (the
subset of interest) divided by the value’s occurrence in the control subset (the subset for the
comparison purpose) (Parrish et al., 2003). To calculate the degree of Over-Representation for a
particular value one must first determine the value’s occurrence in both the experimental class
and control class (computed as percentage) and then divide these two values. It is possible to
derive the Over-Represented values from a contingency table. Suppose variable Vy has value i,
the Over-Representation of value i can be obtained by:

£

OR(V, ;) :L@” Eqn. 4-1

fi’O /Zj:o fJ"O
where r is the number of values of variable V. Consider an example from the traffic safety
domain. Suppose that 50 percent of the alcohol crashes occur on rural roadways, while only 25
percent of the non-alcohol crashes occur on rural roadways. Therefore, the degree of Over-
Representation of alcohol crashes on rural roadways is 50 percent /25 percent = 2. Put simply,
alcohol accidents are Over-Represented on rural roadways by a factor of 2. If the degree of
Over-Representation is greater than 1, the value is an Over-Represented value. In the traffic
safety domain, Over-Representation often indicates problems that need to be addressed through
countermeasures (i.e., safety devices, sobriety checks, etc). As a simple ratio, OR is obviously a
very intuitive quantity to a practitioner.

Max Gain (MG)

One important question a safety professional might ask is: What is the potential benefit from a
proposed countermeasure? The answer to this question is that in the best case a countermeasure
will reduce crashes to its expected value. It is unlikely to reduce crashes to a level less than what
is found in the control group. A metric termed Max Gain (Parrish et al., 2003; Wang, Parrish, &
Chen, 2003) is used to express the number of cases that could be reduced if the subset frequency



(experimental subset) was reduced to its expected value (control subset). Max Gain can be
defined by the value’s occurrence in the experimental subset minus the experimental subset
frequency times the probability the control class occurred. The formula is described as:

r-1 f y fi,O

i jl —r 1 L 4-
j=0 Zr 1 f Eqn 4-2

j=0 1.0

MG (Vi) = fiy =D

where r is the number of values of variable V. Max Gain is a powerful metric when designing
countermeasures. If a choice must be made between two countermeasures, the countermeasure
with higher Max Gain value has the higher potential benefit. If a particular value of a variable is
Over-Represented, the value has positive Max Gain, otherwise the value has negative Max Gain.

Consider an example from traffic safety domain: Analysis indicates that “OFF ROADWAY”
accidents demonstrate the highest Max Gain in an experimental subset. The Max Gain of “OFF
ROADWAY” can be computed by: 3680 — 7743 * (18029 / 124883) = 2562.165. Table 4-1
shows the Max Gain of each attribute value for the variable “EVENT LOCATION”.

Table 4-1. An example of Max Gain

VO016: EVENT LOCATION Experimental  Control OR MG
Subset Subset
OFF ROADWAY 3680 18029 3.292 2562.165
MEDIAN 89 940 1527 30.718
PRIVATE ROAD/PROPERTY 46 293 2532 27.833
DRIVEWAY 10 50 3.226 6.9
INTERSECTION 1028 30641 0.541 -871.804
ON ROADWAY 2890 74930 0.622 -1755.81
Totals 7743 124883

Max Gain is a metric that can be quoted by practitioners in the domain of interest. For example,
in traffic safety, Max Gain is the reduction potential when a “countermeasure” achieves its
highest potential. For the example given in Table 4-1, “Rumble Strips” are a countermeasure
often used to reduce the number of “OFF ROADWAY” accidents. Assuming 100% success with
Rumble Strips, the “OFF ROADWAY” crashes can be reduced by a total of 2562. One cannot
expect a reduction that exceeds the Max Gain. Effectively, Max Gain then becomes an upper
bound on crash reduction potential within this domain. Because Max Gain can be used in such
an intuitive fashion, it becomes a very practical metric — much more practical than some of the
more abstract statistical metrics, such as Confidence, Support and Statistical Significance Z
value.

Max-Max Gain (MMG)

Max Gain shows the potential benefit of implementing a countermeasure. After applying the
countermeasure, the experimental subset frequency is reduced and the control subset frequency
is increased. A recalculation of Max Gain would then produce a different ordering based on
these changed values. The reordering in Max Gain would then highlight another value. A
traffic safety professional might ask: What is the potential reduction in accident numbers if |



continue to focus my countermeasures on the original problem value? Max-Max Gain is a
proposed measure to rank values based on that question.

Consider the attribute value of OFF ROADWAY which demonstrates the highest Max Gain in
the above example. These particular accidents account for 3,680 crashes and demonstrate a Max
Gain of 2,562. For this example, a countermeasure to reduce the OFF ROADWAY accidents to
the same percentage as the control group would leave 1,118 “OFF ROADWAY” accidents in the
experimental subset. A further calculation of Max Gain as described above would then identify
another value (for example “Intersection’) as having the highest Max Gain. Instead of
investigation or adopting a new countermeasure for the newly identified value, the traffic safety
professional might be more interested in determining the maximum possible benefit of
concentrating effort on the originally identified problem (OFF ROADWAY in this example).
Max-Max Gain does this by repeatedly calculating and summing Max Gain for a value until the
potential gain becomes less than 1.0. Table 4-2 shows the steps to compute the Max-Max Gain
of attribute value OFF ROADWAY for variable “EVENT LOCATION”.

Table 4-2. An example of Max-Max Gain

Step S:.—t;fft STucE)tSaEI)t Other Freq. Other Total Max Gain
1 3680 7743 18029 124883 2562.17
2 1117.83  5180.83 20591.17 12744517 280.77
3 837.06 4900.06 20871.94 127725.94 36.33
4 800.73 4863.73 20908.27 127762.27 478
5 795.95 4858.95 20913.05 127767.05 0.63
MMG 2562.17 + 280.77 + 36.33 + 4.78 + 0.63 = 2884.68

Max-Max Gain can be calculated for all values of a variable providing the traffic safety engineer
insight into the most important value that might be addressed by a countermeasure. In this
regard, MMG provides the same benefits to the practitioner as MG.

Results Using New Value Ranking Methods

This research proposes three new value ranking methods, OR, MG and MMG. We choose to
evaluate only MG and MMG here; OR’s contribution is principally to support the other two
methods. To compare the performance of MG and MMG to the other ranking methods, we used
the Alabama accident dataset for the year 2000. The dataset contains 132,626 records and 228
variables. The target variables were selected by applying the filters of Injury, Interstate, Alcohol,
and Fatality. The corresponding occurrence percentage is 21.92%, 8.996%, 5.38% and 0.4853%,
respectively. For each filter, the experimental class (those accidents indicated by the filter) was
represented by a 1 and the control class (the remaining accidents) was represented by a 0.

Pearson’s Correlation With Existing Methods

Since the strength of the linear association between two methods is quantified by the correlation
coefficient, we use Pearson’s correlation coefficient to test if there exits a relationship between
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MG, MMG and the other methods. Since MG and MMG are conceptually simple, a strong or
moderate correlation with an existing method would mean that MG and MMG could effectively
substitute for that method.

Table 4-3 shows the number of variables and the strength of Pearson’s correlation between each
technique to Max Gain that will be used for value ranking. As described in Table 4-3, MG is
strongly correlated to MMG and SSZ, since they have the most number of variables that are
strongly correlated to MG. Similar results occur for MMG, as MMG s also strongly correlated
to SSZ. Since MG and MMG are conceptually simple and are strongly correlated to SSZ, MG
and MMG could effectively substitute for SSZ, with a likelihood of higher intuitive utility by a
domain practitioner.

Table 4-3. Number of variables correlated to MG

Number of variables Correlated based on
Value Pearson’s R
Ranking
Strong Moderate Weak
MMG 175 48 1
SSz 173 50 1
CF 24 70 131
SP 32 133 60
IM 23 70 131

Running Time Efficiency Compared With Existing Techniques

Table 4-4 shows the average run time cost over one thousand experiments for each value ranking
method, using the Alabama crash dataset for the year 2000. For each experiment, we rank the
attribute value for each variable and obtain a run time cost. Table 4-4 shows that MG and CF are
the most efficient methods. MMG is not efficient since it needs to repeat to compute Max Gain.

Table 4-4. Comparison of run times for
different value ranking techniques (in milliseconds)

Value Filter

Ranking Injury Interstate Alcohol Fatality
OR 0.8348 0.8 1.875 0.7782
MG 0.675 0.6814 0.9782 0.6938
MMG 1.775 2.1532 2.2032 1.0218
SSz 0.8188 0.8126 1.8344 0.8124
CF 0.6782 0.6874 0.9532 0.675
SP 1.572 1.5812 1.6124 1.5814
IM 1.7906 1.8032 7.7094 1.7908
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Section 5
Variable Ranking

The Variable Ranking Problem

The problem of variable ranking can be described in the notation provided by Guyon and
Elisseeff (2003). We consider a training dataset with m records {x;; y:} (t =1,...,m), each record
consists of n input variables x;x (k = 1,...,n) and one target variable y;. The input variables are
noted as Vi (k = 1,...,n). Then we get a score S(Vy) of each variable V; according to a particular
variable ranking method computed from the corresponding contingency table. We assume that a
higher score of a variable indicates a valuable variable and that the input variables are
independent of each other. The variables are then sorted in decreasing order of S(Vy) allowing us
to select the top most x variables of interest.

We can construct the contingency table for each variable Vi (k =1, ..., n) as described in section
3. Various variable ranking methods have been proposed. In the following, we present the
ranking methods we applied.

Existing variable ranking methods

The following sections describe existing variable ranking methods including Chi-squared (CHI)
(Lehmann, 1959; Hawley, 1996; Leonrd, 2000), Correlation Coefficient (CC) (Golub et al.,
1999; Furey et al., 2000; Slonim et al., 2000; Guyon, Weston, Barnhill, & Vapnik, 2002),
Information Gain (1G) (Mitchell, 1997, Yang & Pedersen, 1997) and Gain Ratio (GR) (Grimaldi,
Cunningham, & Kokaram, 2003). The limitation of these methods will be discussed in section 6.

Chi-squared (CHI)

The Chi-squared test (Lehmann, 1959; Hawley, 1996; Leonard, 2000) is one of the most widely
used statistical tests. It can be used to test if there is “no association’ between two categorical
variables. ‘“No association” means that for an individual, the response for one variable is not
affected in any way by the response for another variable. This implies the two variables are
independent. The Chi-squared measure can be used to find the variables that have significant
Over-Representation (association) in regard to the target variable.

The Chi-squared test can be calculated from a contingency table (Yang & Pedersen, 1997;
Forman, 2003). The Chi-squared value can be obtained by the equation below:

f
V)= Z, 0("—"‘ Eqn. 5-1
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where k is the variable number (k=1,...,n), and r is the number of values of the variable.
Correlation Coefficient (CC)

If one variable’s expression in one class is quite different from its expression in the other, and
there is little variation between the two classes, then the variable is predictive. So we want a
variable selection method that favors variables where the range of the expression vector is large,
but where most of that variation is due to the class distribution (Slonim et al., 2000). A measure
of correlation scores the importance of each variable independently of the other variables by
comparing that variable’s correlation to the target variable (Weston, Elisseeff, Scholkopf, &
Tipping, 2003).

Let the value of the target variable be “1” (i.e., experimental class) or “0” (i.e., control class). For
each variable Vi, we calculate the mean 4 of the experimental class (4o of the control class)
and standard deviation o ; of the experimental class (oo of the control class). Therefore we
calculate a score:

Hia = Hio Eqgn. 5-2

CC(Vi) =

Ok1 0o

which measures relative class separation. A large value of CC(Vy) indicates a strong correlation
between input variable and class distribution (Golub et al., 1999; Furey et al., 2000; Slonim et
al., 2000; Guyon, Weston, Barnhill, & Vapnik, 2002). We then simply take the variables with the
highest CC(Vy) scores as our top variables. The correlation score is closely related to the Fisher
criterion score (Bishop, 1995; Pavlidis, Weston, Cai, & Grundy, 2002; Weston et al., 2003).

Information Gain (IG)

Entropy measures the impurity of a set of data (Mitchell, 1997). If there is, at most, one class
present, entropy is the lowest. And if the proportions of all present classes are equal, entropy is
highest. Information Gain is a measure based on entropy. Information Gain measures the
decrease of the weighted average impurity of the partitions, compared with the impurity of the
complete set of data. Yang and Pederson (1997) reported Information Gain and Chi-squared test
performed best in their multi-class benchmarks. Information Gain has a generalized form for
nominal valued attributes (Forman, 2003). The Information Gain value can be obtained from the
contingency table:

_ f
IG(Vk)—e(Z . '12.  fio) Z 1 Xe(fll ) Eqgn. 5-3

e(x,y)=— X log x Y log y
where x+y x+y x+y x+y kis the variable number (k=1,...,n), r is the number of

values of the variable, and m is the total number of records.
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Gain Ratio (GR)

Unfortunately, Information Gain is biased in favor of variables with more values. That is, if one
variable has a greater numbers of values, it will appear to gain more information than those with
fewer values, even if they are actually no more informative. Information Gain’s bias is
symmetrical toward variables with more values. Gain Ratio (GR) overcomes this problem by
introducing an extra term. There are two methods to compute GR; the first method computes GR

by:

IG
GR(V, ) = (rvk) Eqgn. 5-4
where r is the number of values of variable V.
The second method computes GR (Grimaldi, Cunningham, & Kokaram, 2003) by:
_1G(V) r1 fin+ fig fiat fio Eqn. 5-5
GRV) = Spev)’ SPV) == 2 log, q

where K is the variable number (k=1,...,n), r is the number of values of the variable, and m is the
total number of records. Since the SP term can be zero in some special cases, the authors in
(Grimaldi, Cunningham, & Kokaram, 2003) define:

GR(VK) = IG(VA) if SP(Vi) = 0. Eqn. 5-6

In our study, we used the second method because it gives us more information about
the distribution of accidents.
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Section 6
A New Variable Ranking Method

Sum Max Gain Ratio (SMGR)

The above variable ranking methods compute the score of each variable based on all the attribute
values of a particular variable. This implies every attribute value has the same impact on a
particular variable. We propose a new variable ranking method called Sum Max Gain Ratio
(SMGR) (Wang, Parrish, Smith, & Vrbsky, 2005) that computes the score based on only a
portion of the attribute values for a particular variable. In section 4, we introduced how to
compute Max Gain. Those attribute values that have positive Max Gain will be Over-
Represented.

Sum Max Gain (SMG) is the total number of cases that would be reduced if the subset frequency
were reduced to its expected value for the attribute values that are Over-Represented (i.e., those
values that have a Max Gain > 0). That is, SMG is the sum of all positive Max Gain values for a
particular variable. More formally:

SMG(Vy) =Z:MG(\/M) if MG(V,;)>0 Eqn. 6-1

where r is the number of values of variable V. As an example, Table 6-1 shows the distribution
by “Day of Week” for alcohol accidents in Alabama’s Mobile County for the year 2000.
Saturday and Sunday exhibit the positive Max Gains. The Sum Max Gain of variable of Day of
Week (Voos) Will be: SMG (Voos) = 1031.824 + 760.082 = 1791.906.

Table 6-1. Frequency table of variable of “Day of Week”

Voos: Day of Week s:rtéfft g:zgr ggzr Max Gain
Saturday 2012 15837 2.053 1031.824
Sunday 1474 11535 2.065 760.082
Friday 1275 22868 0.901 -140.335
Tuesday 737 17750 0.671 -361.574
Thursday 872 19954 0.706 -362.983
Wednesday 693 18092 0.619 -426.741
Monday 667 18860 0.571 -500.274

One problem with SMG s its bias in favor of variables with fewer values. By dividing by the
total number of cases in the subset frequency (experimental class), it is possible to factor out this
issue. In particular, Sum Max Gain Ratio (SMGR) is the ratio of the number of cases that could
potentially be reduced by an effective countermeasure (SMG) to the total number of cases
associated with the Over-Represented values (i.e., those cases where the Max Gain > 0). That is:

Eqn. 6-2
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SMGR(V, ) = SMG(\/k)/Z: fp if MG(Vy;)>0

where r is the number of values of variable V. The SMG of variable “Day of Week” was
computed from the above example to be 1791.906 (1031.824 + 760.082). Saturday and Sunday
have positive Max Gain, and these two attribute values are Over-Represented. The total number
of cases associated with the Over-Represented values will be 3486 (the sum of 2012 and 1474).
The SMGR will be 0.514 (1791.906 / 3486 = 0.514).

SMGR is always in the range of 0 to 1 because SMG is always less than the corresponding
subset frequency. A high score of SMGR is indicative of a valuable variable with a high degree
of relevance to the filter subset (experimental group). When presented in decreasing SMGR
order, the most relevant variables are at the top.

Results Using SMGR

To compare the performance of SMGR to the other ranking methods, we used the Alabama
Mobile County accident dataset for the year 2000. The target variables were selected by
applying the filters of Injury, Interstate, Alcohol, and Fatality, respectively.

The following sections compare the Pearson’s correlation between SMGR and existing variable
ranking methods, the run time performance, predictive ability.

Pearson’s Correlation With Existing Methods

Since the strength of the linear association between two methods is quantified by the correlation
coefficient, we use Pearson’s correlation coefficient to test if there exits a relationship between
Sum Max Gain Ratio and any other method. Since SMGR is conceptually simple, a strong
correlation with an existing method would mean that SMGR could effectively substitute for that
method.

Table 6-2 shows the Pearson’s correlation coefficient between SMGR and the other variable
ranking methods. SMGR is correlated to CHI, 1G and GR. Table 6-3 shows the complexity of
each method. For complexity comparison, n is the number of variables and m is the number of
attribute values. SMGR may be preferable to other variable ranking methods because of its
conceptual simplicity and less complexity.

16



Table 6-2. Pearson’s correlation, SMGR and other methods

Variable Filter

Ranking Injury Interstate Alcohol Fatality
SMG weak moderate strong weak
CHI moderate moderate strong moderate
CcC weak weak weak weak
IG moderate moderate strong moderate
GR moderate moderate moderate moderate

Table 6-3. Complexity analysis

Method Complexity
SMGR O(nm/2)
SMG O(nm/2)
CHI O(n Jm)
CcC O(n [ 2m)
IG O(n 00'm)
GR O(n 00'm)

Running Time Comparison

SMGR is efficient since it computes a variable score based on the Over-Represented attribute
values, while other methods compute a variable score based on all attribute values. To illustrate
this, we ran experiments on a real-world traffic dataset. The results are given in Table 6-4.

Table 6-4. Comparison of run times for different variable ranking techniques (in milliseconds)

Variable Filter

Ranking Injury Interstate Alcohol Fatality
SMGR 1.542 1.504 1.465 1.407
SMG 1.560 1.498 1.484 1.413
CHI 2.834 2.851 2.769 2.840
cc 5.563 5.520 5.446 5.523
IG 5.296 4.990 4.336 3.491
GR 9.366 8.940 8.343 7.497

Table 6-4 shows the average run time cost over one thousand experiments. Each experiment uses
the same dataset and variable ranking method. For each experiment, we rank variables and get a
run time cost. From Table 6-4, we can see the average run time cost of SMGR and SMG is the
lowest, while the running costs of CHI, CC, IG and GR are higher. The dataset examines
contained 228 variables and each variable has attribute values ranging from 2 to 560. For this
dataset, the execution time is relatively small for all tested approaches (less than 10 ms).
However, the savings in execution cost (50%) of SMGR to the second closest approach will have
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significant implications for large datasets with tens or hundreds of thousands of variables, and
when the attribute value of a variable is diverse.

Classification

In order to evaluate how our method of variable ranking affected classification, we employed the
well known classification algorithm C4.5 (Quinlan, 1993) on the traffic accident data. We used
C4.5 as an induction algorithm to evaluate the error rate on selected variables for each variable
ranking method. C4.5 is an algorithm for inducing classification rules in the form of a decision
tree from a given dataset. Nodes in a decision tree correspond to features and the leaves of the
tree correspond to classes. The branches in a decision tree correspond to their association rule.

C4.5 was applied to the datasets filtered through the different variable ranking methods. We used
the Injury filter as described above to define the target variable. The top 25 best variables were
selected through different variable ranking methods. Table 6-5 shows the error rate and the size
of the decision tree for each variable ranking method.

Table 6-5. Results for the C4.5 algorithm
Size of the tree

Method Error rate (# of nodes)
SMGR 0.7% 32
SMG 1.0% 81

CHI 0.9% 159

cC 7.2% 13070

IG 0.9% 159

GR 0.7% 32

As seen in the experimental results, SMGR, CHI, IG and GR did not significantly change the
generalization performance and these methods performed much better than CC. Table 6-5 also
shows how variable ranking methods affects the size of the trees (the number of nodes in a tree)
induced by C4.5. Smaller trees allow a better understanding of the decision tree. The size of the
resulting tree generated by SMGR and GR showed a decrease from the maximum of 14438
nodes to 32 nodes, accompanied by a slight improvement in accuracy. To summarize, SMG and
SMGR perform better than CHI, CC and 1G.
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Section 7
Using column-major storage to improve variable selection performance

Motivation

The increasingly large datasets available for data mining and machine learning tasks are placing
a premium on algorithm performance. One critical item that impacts the performance of these
algorithms is the approach taken for storing and processing the data elements. Typical
applications, including machine learning applications, tend to store their data in row-major order
(Parrish et al., 2005). This row-centric nature of storage is consistent with the needs of typical
applications. In particular, rows are often inserted or deleted as a unit and updates tend to be
row-oriented. This approach, while efficient for row-centric applications, may not be the most
efficient for certain column-centric applications. In particular, many statistical analysis
computations and variable selection approaches are column-centric.

In this section we measure the impact on processing time for row-major and column-major
storage. For both approaches, we assume all of the data is stored in a single file. (We refer the
reader to an analysis of the impact on disk 1/0 of column-major versus row-major storage.) The
processing time advantage provided by column-major order is that column-centric statistical
computations can be computed on-the-fly as all data for each column is read consecutively. This
differs from the row-major order in which all of the data must be read before any statistical
computations can be completed. We next examine the performance tradeoffs between row-
major order and column-major order in the context of variable and value ranking.

Results Under Value Ranking

In order to empirically test disk storage for value ranking, we ran experiments on the Alabama
Mobile County dataset for the year 2000. We compute the average run time performance for the
different value ranking techniques, including SSZ, CF, SP, IM, MG and MMG, under the same
disk storage configuration. Figure 7-1 shows the average run time performance for these value
ranking techniques. The chart compares row-major order versus column-major order for a
varying number of columns. As seen in Figure 7-1, column-major order provided faster
empirical performance for the value ranking techniques.
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Figure 7-1. Average value ranking performance, column-major versus row-major
Results under variable ranking

To compare the performance of row-major order and column-major order in the context of
variable ranking, we used the Alabama Mobile County accident dataset for the year 2000. The
dataset contains 14,218 records (i.e., rows) and 228 variables (i.e., columns). The target variable
was selected by applying the filter of Injury. The experimental class (those accidents indicated
by the filter) was represented by a “1” and the control class (the remaining accidents) was
represented by a “0.” To facilitate generating datasets with varying numbers of rows and
columns, and to assist in creating row-major and column-major storage options, the original
dataset from the CARE application was transferred to Microsoft Excel for manipulation. The
manipulated datasets were stored from Microsoft Excel as ASCII files. The variable selection
algorithms were developed in C++ and manipulated the datasets in the ASCII files.
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For each particular variable selection approach on each different dataset, we run one experiment
and get a run time cost. One thousand of the same experiments were run to obtain an average run
time cost. Figure 7-2 and Figure 7-3 illustrate the performance differences between the row-
major order and column-major order storage methods in the context of SMGR by utilizing
specific values for the dataset size, number of rows, number of columns, etc. The figures show
the average run time cost in seconds, for a varying number of data values accessed.
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Figure 7-2. Performance comparison, row-major versus column-major, fixed number of rows, SMGR.

Figure 7-2 illustrates the number of seconds to perform the variable selection of SMGR for a
varying number of columns but a constant number of rows. The figure illustrates the results for
14,218 records (i.e., rows). The diagonal lines illustrate the run time cost for variable selection
using the row-major and column-major methods. The run time ranges from 1.415 to 86.3
seconds using row-major order, while the run time ranges from 1.356 to 66.1 seconds using
column-major order. As illustrated in Figure 3, after approximately one thousand columns, the
run time cost of row-major order processing increases faster than the column order processing.
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In this experiment, column order processing outperforms row order regardless of the selection
algorithm used.

Figure 7-3 illustrates the number of seconds to perform variable selection with a varying number
of rows but a constant of columns.
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Figure 7-3. Performance comparison, row-major versus column-major, fixed columns, SMGR

Figure 7-3 illustrates the result for 217 columns (i.e., variables). The plot illustrates the run time
cost to do variable selection using both row-major and column-major methods. As illustrated in
the figure, the run time cost is almost the same using row order and column order until up to
approximately 14,000 rows in the dataset. From that point, the run time cost for the row order
increases slightly faster than using the column order.

Table 7-1 provides the relative performance of the different selection algorithms for row-major
datasets for a range of column sizes. For row-major order, Chi-squared (CHI) consistently
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performed the worst. No individual approach distinguished itself as best in row-major order.
Table 7-2 gives the relative performance of the different selection algorithms for column-major
datasets for a range of column sizes. Under column-major order, Information Gain (IG) was
consistently the worst performer while Sum Max Gain Ratio (SMGR) was consistently the top
performer.

Table 7-1. Variable selection, row-major order

Number of Performance
columns Best Worst

217 SMGR CHI
1085 cC CHI
2170 cC CHI
3255 GR CHI
4340 SMGR CHI
5425 GR CHI
6510 GR CHI
7595 IG CHI
8680 cC CHI
9765 cC CHI
10850 SMGR CHI

Table 7-2. Variable selection, column-major order

Number of Performance
columns Best Worst

217 CHI IG
1085 SMGR IG
2170 SMGR IG
3255 SMGR IG
4340 SMGR IG
5425 SMGR IG
6510 SMGR IG
7595 SMGR IG
8680 SMGR IG
9765 SMGR IG
10850 SMGR IG

This research has shown that column-major order performs better than row-major order in the
context of heuristic variable selection. Chi-squared performs the worst when using row-major
order and Sum Max Gain Ratio performs the best when using column-major order.
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Section 8
Integration with CARE

Improved Query Interface

A primary goal of the CARE application is the ability to provide traffic safety professionals with
quick, intuitive and easy to use interface to the rich traffic accident data. The incorporation of
the identified variable and value ranking algorithms into the CARE application could provide
traffic safety professionals with another tool to assist in identifying causal factors and evaluating
deployed counter measures. Figure 8-1 shows an initial prototype for incorporating these data
mining techniques into CARE.
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Figure 8-1. Alcohol related filter, rank by SMGR
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Figure 8-1 shows the ranking of variables using the alcohol filter for the year 2000 Alabama
Accident Dataset. Table 8-1 describes the highlighted boxes in the diagram:

Table 8-1. Description of featured elements in Figure 8-1

Box Description

The dataset selected

The filter selected

The value ranking method to be used

The variable ranking method to be used for sorting the table

The variable ranking table sorted by the appropriate method

Values for the selected variable sorted by the appropriate value ranking
method

@D g b~ W N =

Table 8-2 summarizes the top five variables selected by SMGR as shown in Figure 8-1.

Table 8-2. Summary of top five variables from Figure 8-1

Ranking | Variable Label Description
. Indicates the results for the
1 V0036 Test Results Driver C Blood Alcohol Test given.
2 V0065  Citation Charged, Vehicle C Indicates that a citation was
given to the causal driver
3 V0035 Type Test Given Driver C Indicates the type Of. test given
the causal driver
4 V0130 Citation Charged, Vehicle 2 Indicates that a citation was
given a second vehicle
5 V0021 Number Fatalities Indicates the number of
fatalities in the accident

The value ranking (indicate by box 6 in Figure 8-1) is for a single variable. For the case in
Figure 8-1, the value ranking is for variable V0036 as indicated by the black triangle (») next to
the variable in the variable ranking table. For this case, the value "0.10 — 0.199" was the most
over-represented value for the variable "Test Results, Driver C."

For comparison purposes, Figure 8-2 shows the screen when using CC as the variable ranking

method using the same dataset and filter as Figure 8-1. Table 8-3 provides a summary of the top
five variables from Figure 8-2.
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Figure 8-2. Alcohol related filter, rank by CC

Table 8-3. Summary of top five variables from Figure 8-2

Ranking | Variable Label Description
1 V0003 Month The month the accident occurred
9 V0006 Week '1I'he week of the accident beginning with January 1 — January 7 as Week
3 V0004 Date of Month ~ The date of the month the accident occurred ( between 1 and 31)
4 V0126 Dir of travel Indipates the direction of travel for a second vehicle involved in the
Vehicle 2 accident. (North, South, East, West, Unknown)
5 V0008 Day of Week The day of the week of the accident.

For further comparison, Figure 8-3 shows the screen when using CHI as the variable ranking
method using the same dataset and filter as used in Figure 8-1 and Figure 8-2. Table 8-4
provides a summary of the top five variables from Figure 8-3.
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Figure 8-3. Alcohol related filter, rank by CHI

Table 8-4. Summary of top five variables from Figure 8-3

Ranking | Variable Label Description

1 V0035 Te;:i\ll?;sglts Indicates the results for the Blood Alcohol Test given.

2 V0036 Citation _Charged, Indicates that a citation was given to the causal driver

Vehicle C
- . Indicates the officer's assessment of the causal drivers condition to
3 V0032 Condition, Driver C include apparently asleep, ill, fatigued, etc.
4 V0007 Time Time of day of the accident
Safety Equioment Indicates the officer's assessment of the type of safety equipment
5 V0034 y =quip ’ available and used by the causal driver. This includes lap and shoulder
Driver C )
belts and air bags.
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Section 9
Conclusions

In this research, we have presented a value ranking method called Max Gain (MG). MG is a
very intuitive method, in that it serves as a metric that has definitive meaning to a practitioner,
particularly within the traffic safety domain discussed here. In particular, MG gives the
maximum potential for reduction in crashes, given the application of a countermeasure designed
to reduce crashes. Thus, MG allows the practitioner to make resource tradeoffs among
countermeasures, based on real numbers.

MG is not only useful as a metric, but is also useful as a value ranking method. In particular,
MG is strongly correlated with SSZ and outperforms most of the previous value ranking
techniques, making it a conceptually simpler proxy for SSZ. It is also moderately correlated
with SP, making it a potential proxy for SP as well.

We also present a variable ranking method called Sum Max Gain Ratio (SMGR). SMGR is
derived from MG and uses Over-Represented attribute values as the primary contributing factor
in variable ranking. The experiments have shown SMGR performs well at variable ranking with
less run time cost than more traditional approaches, such as Chi-squared and Information Gain.
In certain cases, it was empirically shown to provide a faster run time with similar variable
rankings. The findings suggest that SMGR is more sensitive to the number of variables
(columns) than to the number of records (rows).

In addition, we examined the performance tradeoffs between row-major order and column-major
order in the context of heuristic variable selection. The research has shown that column-major
order performs better than row-major order in the context of heuristic variable selection and
value ranking.
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